这篇笔记用于收藏别人的论文解读
Social Diffusion
Title | Unscramble |
---|---|
Social Influence Locality for Modeling Retweeting Behavior | 解读 代码 |
Role-Aware Conformity Influence Modeling and Analysis in Social Network | 解读 |
DeepInf:Social Influence Prediction with Deep Learning | 解读 |
Reverse Influence Sampling in Python | 解读及代码 |
Cost-effective Outbreak Detection in Networks(CELF) | 解读及代码 解读 |
DeepCas: an End-to-end Predictor of Information Cascades | 解读 |
Inf2vec: Latent Representation Model for Social Influence Embedding | 解读 |
POI2Vec: Geographical Latent Representation for Predicting Future Visitors | 解读 |
Network Embedding and GNN
Title | Unscramble |
---|---|
Heterogeneous Graph Attention Network | 解读 |
Attributed Social Network Embedding | 解读 |
Self-Translation Network Embedding | 解读1 解读2 |
Self-Paced Network Embedding | 解读 |
CANE: Context-Aware Network Embedding for Relation Modeling | 解读 |
HIN2Vec: Explore Meta-paths in Heterogeneous Information Networks for Representation Learning | 解读1 解读2 |
Embedding Temporal Network via Neighborhood Formation | 解读 |
Network Representation Learning with Rich Text Information | 解读1 解读2 |
Meta-Path Guided Embedding for Similarity Search in Large-Scale Heterogeneous Information Networks | 解读 |
SHINE: Signed Heterogeneous Information Network Embedding for Sentiment Link Prediction | 解读 |
Context-Aware Network Embedding for Relation Modeling | 解读 |
GAN在网络特征学习中的应用 | this |
一文读懂「Attention is All You Need」 附代码实现 | 解读 |
node2vec: Scalable Feature Learning for Networks | 解读1 解读2 解读3 |
PTE:Predictive Text Embedding through Large-scale | 解读 |
struc2vec: Learning Node Representations from Structural Identity | 解读 |
AspEm: Embedding Learning by Aspects in HINs | 解读 |
Max-Margin DeepWalk: Discriminative Learning of Network Representation | 解读1 解读2 |
Structural Deep Network Embedding | 解读 |
Learning Structural Node Embeddings via Diffusion Wavelets | 解读 |
HARP: Hierarchical Representation Learning for Networks | 解读 |
Dynamic Network Embedding by Modeling Triadic Closure Process | 解读 |
RaRE: Social Rank Regulated Large-scale Network Embedding | 解读 |
TransNet: Translation-Based Network Representation Learning for Social Relation Extraction | 解读 |
GraphGAN: Graph Representation Learning with Generative Adversarial Nets | 解读 |
Graph Convolutional Network | 解答 |
GraRep: Learning Graph Representations with Global Structural Information | 解读 |
Deep Dynamic Network Embedding for Link Prediction | 解读 |
Representation Learning for Attributed Multiplex Heterogeneous Network | GATNE |
Inductive Representation Learning on Large Graphs | GraphSAGE |
Billion-scale Commodity Embedding for E-commerce Recommendation in Alibaba | 解读 |
Graph Convolutional Neural Networks for Web-Scale Recommender Systems | PinSAGE |
Semi-Supervised Classification with Graph Convolutional Networks | Semi-GCN |
Joint Type Inference on Entities and Relations via Graph Convolutional Networks | 解读 |
图卷积神经网络(GCN) | GCN |
Adaptive SamplingTowards Fast Graph Representation Learning | 解读 |
ProNE: Fast and Scalable Network Representation Learning | ProNE |
ROTATE:Knowledge graph embedding by relational rotate in complex space | Rotate |
Signed Graph Convolutional Network | SGCN |
GAT: Graph Attention Network | GAT GAT2 |
Large-Scale Learnable Graph Convolutional Networks | LGCN LGCN2 LGCN3 LGCN4 LGCN5 代码分析 |
Hierarchical Graph Representation Learning with Differentiable Pooling | DiffPool DiffPool |
ML & DL
Title | Unscramble |
---|---|
常见散度与距离(KL散度,JS散度,Wasserstein距离,互信息MI) | Here |
【简化数据】奇异值分解(SVD) | Here |
AUC的计算与近似 | Here |
PCA | Here Here Here |
AdaBoost | Here Here |
Batch Normalization | Here |
矩阵的正定及半正定 | Here |
精确率、召回率、F1 值、ROC、AUC | Here |
Hierarchical Softmax | Here |
傅立叶变换 | Here |
卷积神经网络(CNN)之一维卷积、二维卷积、三维卷积详解 | Here |
变分自编码器(VAE) | Here |
工具
Title | Unscramble |
---|---|
tf.slice() | Here |
tf.tile() | Here |
TensorFlow中global_step的简单分析 | Here |
tensorflow之tf.nn.l2_normalize与l2_loss的计算 | Here |
tf.nn.top_k() | Here |
python中matplotlib的颜色及线条控制 | Here |
python set(集合) & 与 and 与 or之间的区别 | Here |
numpy实现top_k | Here |
np reshape(-1,1) | Here |
傅里叶变换 | Here Here Here |
技术博客
https://davidham3.github.io/blog